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Abstract

The WegenerNet Feldbach Region (FBR) climate station network in southeastern Aus-
tria comprises 156 meteorological stations covering an area of about 300 km2. In ad-
dition to observing a variety of other meteorological parameters, ground precipitation
data with a temporal resolution of 5 minutes are provided continuously since 2007. Due
to the high spatial and temporal resolution, these data are particularly valuable for re-
search on precipitation extremes at the regional scale. However, some inhomogeneities
due to sensor changes, station re-locations, occasional clogging, and interpolations are
inevitable. The main objective of this thesis is to find and quantify such errors station-
wise, by comparing daily WegenerNet L2 v7.1 data (2007-2021) of each station with
their respective neighbors’ data. Turning points of the cumulative sum function of the
normalized difference between the station and the median of its neighbors are used to
detect breakpoints in the respective time series. A similar approach has been applied in
different form to other WegenerNet parameters before. Based on the breakpoints found,
the data are homogenized by determining correction factors through linear regression
analyses for the relevant time periods and stations. The corrections are proposed as an
improvement for the upcoming new data version of the WegenerNet, L2 v8, as they lead
to a quality improvement by increasing homogeneity at stations affected. In addition
to homogenization, the corrected data are compared in detail with respect to extreme
precipitation with the uncorrected version v7.1 as well as with the standard data sets
SPARTACUS, ERA5, ERA5-Land, and INCA. Findings include that individual extreme
precipitation events in the FBR are not or inadequately represented in the analyzed data
sets and that they tend to underestimate local precipitation amounts in the region.
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Zusammenfassung

Das WegenerNet Feldbachregion (FBR) in der Südoststeiermark umfasst 156 Klimas-
tationen, die eine Fläche von rund 300 km2 abdecken. Neben der Messung von einer
Reihe anderer meteorologischer Parameter werden seit 2007 kontinuierlich Bodennieder-
schlagsdaten mit einer zeitlichen Auflösung von 5 Minuten bereitgestellt. Aufgrund der
hohen zeitlichen und räumlichen Auflösung sind diese Daten besonders wertvoll für die
Erforschung von Niederschlagsextremen auf der regionalen Ebene. Einige inhomogen-
itäten aufgrund von Sensorwechseln, Stationsverlagerungen, zeitweiligen Verstopfungen
und Interpolationen sind jedoch unvermeidlich. Das Hauptziel dieser Arbeit ist es, solche
Fehler stationsweise zu finden und zu quantifizieren, indem die täglichen WegenerNet
L2 v7.1 Daten (2007-2021) jeder Station mit den Daten der jeweiligen Nachbarstationen
verglichen werden. Wendepunkte der kumulativen Summenfunktion der normalisierten
Differenz zwischen einer Station und dem Median ihrer Nachbarn werden dabei ver-
wendet, um "Breakpoints" in den jeweiligen Zeitreihen zu lokalisieren. Ein ähnlicher
Ansatz wurde in abgewandelter Form bereits auf andere WegenerNet-Parameter ange-
wandt. Auf der Grundlage der gefundenen Breakpoints werden die Daten homogenisiert,
indem Korrekturfaktoren durch die Anwendung einer linearen Regressionsanalyse für die
betreffenden Zeiträume und Stationen bestimmt werden. Die Korrekturen werden als
Verbesserung für die kommende neue Datenversion des WegenerNet, L2 v8, vorgeschla-
gen, da sie zu einer Qualitätsverbesserung durch die Erhöhung der Homogenität bei
betroffenen Stationen führen. Zusätzlich zur Homogenisierung werden die korrigierten
Daten im Hinblick auf Extremniederschläge detailliert mit der unkorrigierten Version
v7.1 sowie mit den Standarddatensätzen SPARTACUS, ERA5, ERA5-Land, und INCA
verglichen. Die Ergebnisse zeigen, dass einzelne extreme Niederschlagsereignisse in der
FBR in den Standarddatensätzen nicht oder nur unzureichend repräsentiert sind und
diese dazu neigen, die lokalen Niederschlagsmengen in der Region zu unterschätzen.
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1 Introduction

The relevance of high quality precipitation data emerges from the importance of being
able to observe, model and forecast heavy precipitation both spatially and temporally.
Mainly since in most regions of the northern hemisphere a climate change driven in-
crease in e.g. one-day and five-day heavy precipitation can be observed since the 1950s,
although the proportion of stations with a significant increase varies considerably be-
tween regions, with values of e.g. 6.6 % for Central end Western Europe compared to
14.4 % for Northern Europe and a total of 9.1 % (all values considering daily precipita-
tion sums) (IPCC 2021, Sun et al. 2021).

At a global scale, a one-day event that happened once in ten years in 1850-1900 (seen as
years without human influence) does already occur 1.3 times with 6,7 % relative increase
in intensity (IPCC 2021). With 2 °C of global warming, such events are estimated to
occur 1.7 times in 10 years with 14 % increase in intensity. At 4 °C, 2.7 events are
expected, with an increase in intensity of 30.2 % (IPCC 2021). Under this premise,
high-resolution precipitation data are highly valuable in the scientific community. How-
ever, due to potential high losses in assets, as seen after recent flooding events e.g. in
Germany and Austria in summer 2021, such data become increasingly valuable in other
areas as well. Next to the insurance and agricultural sector also e.g. in construction and
urban planning data are needed. High quality precipitation data therefore play an im-
portant role in being a basis for risk assessments and subsequently in minimizing losses
and enabling adaptation.

Precipitation data usually are obtained from direct gauge measurements or remote sens-
ing by e.g. satellites and radar. While gauge measurement as a direct measurement
method is less prone to systematic errors, remote sensing methods have the advantage
of being less spatially limited in conducting measurements. However, since remote sens-
ing is an indirect measurement technique, gauge data are also used as reference for
evaluation and as input component to increase the overall quality of remote sensing data
(O et al. 2017, Sharifi et al. 2016, Nerini et al. 2015). Ground monitoring gauge station
networks with a high spatial and temporal resolution thus are highly valuable.

Such a high density ground weather station network is the WegenerNet in the Feld-
bach region (FBR), located in the southeast of the Austrian state of Styria (Kirchengast
et al. 2014, Fuchsberger, Kirchengast & Kabas 2021). It includes 156 weather stations
in an area of about 300 km2. Designed to serve as a long-term monitoring and valida-
tion facility for weather and climate research and applications, it provides continuous
precipitation data since 2007. However, providing data from many stations and at a

1



1 Introduction

high temporal resolution of 5 minutes, inhomogeneities can be expected. Mainly from
clogging, sensor changes, station re-locations and interpolation of unreliable data by the
WegenerNet Processing System (WPS).

The main objective of this thesis is to find and quantify such errors station-wise, by
comparing daily WegenerNet L2 v7.1 data, documented by Fuchsberger, Kirchengast,
Bichler, Leuprecht & Kabas (2021), of each station with their respective neighbors’
data. Subsequently, found inhomogeneities are to be corrected by applying linear cor-
rection factors. Furthermore, the information content of precipitation extremes in the
improved data set, denoted as WegenerNet L2 v8, is compared against the previous
version (WegenerNet L2 v7.1), and other standard data sets. These are SPARTACUS
("SPARTACUS"), ERA5 ("ERA5"), & ERA5-Land ("ERA5 Land"), and INCA ("INCA")
documented by Hiebl & Frei (2018), Hersbach et al. (2018, 2020), Muñoz Sabater (2019)
and Haiden et al. (2011) respectively.

This thesis will address the above tasks in five sections. Chapter 2 focuses on the descrip-
tion of the study region and the WegenerNet FBR and outlines the research question.
Chapter 3 describes the research setup, including data description and preprocessing, a
variance analysis and a detailed method description. Two main methods are applied.
For finding breakpoints in the data, a modified version of an algorithm described by
Taylor (2000) is used. Confidence in biases is drawn by the level of agreement of daily
precipitation amounts between the candidate station and selected neighboring stations.
Second, for finding adequate correction factors for all breakpoints, a station wise linear
regression analysis is applied. Results of both methods are discussed in detail in Chap-
ter 4.

Next to documenting the correction factors and analyzing the changes in quality, us-
ing statistical parameters, the information content about extreme precipitation in the
region and at example locations is compared to above mentioned data sets. This is done
to evaluate possible improvements and highlight differences in the resolution and mag-
nitude of extreme precipitation information content. Furthermore the limits of the used
methods and results are described. The chapter closes with a re-correction, in which the
methods are applied again on the corrected data, to allow for adjustments and to en-
sure that no overcorrections occurred. This re-correction ultimately determines the final
proposed correction factors. We conclude by summarizing the main results in Chapter 5.
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2 Study region and research aims

2.1 WegenerNet Feldbach Region
The WegenerNet FBR, a high resolution hydro-meteorological station network, that is
located in the Raab river valley, southeast of the Austrian state of Styria (Kirchengast
et al. 2014, Fuchsberger, Kirchengast & Kabas 2021). Regionally typical hills, known as
riedel, with altitudes ranging from 250 m to 600 m, dominate the terrain. Summers are
often hot, with heavy rainfall from thunderstorms, while winters are mild. This is due
to the strong influence of Mediterranean climate systems from the south, as the region
is surrounded by mountain ranges from north to west (O et al. 2018).

In total 156 meteorological stations are spread over an area of 300 km2 measuring a
wide range of meteorological parameters. The network provides continuous data start-
ing from January 2007 with a temporal resolution of 5 min and an average spatial density
of one station per 2 km2. The allocation of the stations and their type is shown in Fig-
ure 2.1.
While all base stations measure the parameters air temperature, liquid precipitation and
relative humidity, there are stations with additional sensors. Stations designated as Spe-
cial Base Stations in addition measure soil parameters and so-called Primary Stations
additionally measure solid precipitation and wind parameters. Furthermore, a reference
station in the center of the network does measure the base parameters but also radiation,
air pressure, solid precipitation and wind parameters (Scheidl et al. 2020).
Since 2020, also 3D atmospheric sensors, such as a precipitation radar, microwave and
infrared radiometers, and GNSS ground stations, are in use at selected stations. How-
ever, the present thesis focuses on the 2D ground-station data data and the former
will thus not be discussed in detail. As visible in Figure 2.1 the network also includes
four external stations, two of which are operated by the Central Institute for Meteorol-
ogy and Geodynamics (ZAMG) and two by the Austrian Hydrographic Service (AHYD).

The WPS is processing all raw data automatized and is divided in three main compo-
nents. The Command Receive Archiving System (CRAS), the Quality Control System
(QCS) and the Data Product Generator (DPG).
These components have already been described in detail by Kirchengast et al. (2014)
and in a recent update, by Fuchsberger, Kirchengast & Kabas (2021). Therefore, we will
discuss only the basic functions and provide details about the collection of precipitation
data, which is the main subject of this thesis.
Raw data are sent hourly to the WegenerNet servers by the CRAS as Level 0 data. Next,
the QCS applies reliability checks on the Level 0 data, mainly by comparing stations
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2 Study region and research aims

with each other and climatological plausibility testing (Scheidl et al. 2020). The data is
then stored as Level 1 data and serve as input for the DPG. The DPG allows to inter-
polate QCS flagged values, generate time series data with larger periods and interpolate
values for grid data products. Hence, data that are output of the DPG are considered
Level 2 data and carry a Data Product Flag (DP-Flag), indicating whether and how the
value was interpolated (Scheidl et al. 2020).
Regarding precipitation measurement, at each station the integrated amount of every
5 min is sampled and transmitted every hour. After being checked by the QCS, the data
are fed into the DPG and values are interpolated and flagged if necessary. As output,
data are available as Level 2 time series data, ranging from sub-daily, starting at 5 min,
to annual (O et al. 2018, Fuchsberger, Kirchengast & Kabas 2021).

In this analysis, daily level 2 data are used for the determination of breakpoints and
the calculation of correction factors. For the comparative analysis of the results, hourly
and daily data are used.

Three different sensor types have been installed in the WegenerNet so far. Therefore, all
three types are in operation at the reference station. The primary stations are addition-
ally equipped with a heating system to be able to measure solid precipitation (O et al.
2018). Since 2013, the MeteoServis type MR3H ("Meteoservis") is used fore this purpose,
which replaced the R.M. Young type 52202 ("Young"). The base stations and thus the
majority of the stations were, until 2016, all equipped with unheated Theodor Friedrichs
& Co type 7041.2000 ("Friedrichs")(O et al. 2018). They were however, successively
replaced with unheated Meteoservis sensors. Which has thus become the primary sensor
used in the network. All sensors operate according to the tipping bucket principle and
specifications are provided by Young (2022), Meteoservis (2022) and Theodor Friedrichs
& Co (2022) respectively. Whereas a detailed description of implementation and usage
in the WegenerNet FBR is provided by Szeberényi (2014) & Kabas (2012).
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2.1 WegenerNet Feldbach Region

Figure 2.1: Region overview, locations, and types of the WegenerNet FBR stations.
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2 Study region and research aims

2.2 Motivation and aims
Providing long-term data from a large number of sensors at a high spatial and temporal
resolution comes with the potential for breakpoints in the data and the need to homoge-
nize. Breakpoints can occur primarily due to sensor changes, sensor relocation, clogging
and false interpolations of unreliable data by the WPS. Since different sensors are used,
systematic sensor type specific errors are also possible.
The latter has already been investigated and corrected in detail for the Friedrichs and
Young sensors by O et al. (2018). Finding a relative bias for both, when compared to
external stations (ZAMG and AHYD) of around 12 % (O et al. 2018). However, since
a breakpoint analysis has not yet been performed on a station-by-station basis and the
time series has been too short for O et al. (2018) to check for systematic errors con-
cerning the now primarily used Meteoservis sensors, there is room for further quality
improvement.

This thesis aims to close this gap and improve the quality of the WegenerNet FBR
precipitation data, in view of the release of the upcoming data version v8.
Thus, each station is checked for breakpoints individually and is corrected if applicable
and it is analyzed if systematic errors with Meteoservis sensors are present.
As mentioned above, for the scientific community and others the value of high quality
precipitation data lies mainly in the information content about extreme precipitation.
Therefore, the second objective, evaluating the improvements and comparing them to
other data sets, will be conducted with a focus on heavy precipitation. Thereby, the
previous WegenerNet L2 v7.1 and the above introduced standard data sets SPARTA-
CUS, ERA5 & ERA5 Land and INCA are used as comparison and analyzed in respect
to heavy precipitation by e.g. providing the differences in the 95th percentile exceedance
time series (daily and hourly).
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3 Data and methods

3.1 Data and preprocessing

The data basis for homogenization is the WegenerNet L2 v7.1 dataset. Full documen-
tation is provided by Fuchsberger, Kirchengast, Bichler, Leuprecht & Kabas (2021) and
data can be accessed via the WegenerNet data portal on the website at wegenernet.org.
The daily precipitation amount subset for the fifteen year period from 2007 to 2021 is
used in this study. Based on 5 min precipitation amounts, this dataset contains ag-
gregated 24-hour precipitation amounts for each station in the network with the day
beginning at 6 am UTC.

For the breakpoint analysis the data set is limited to wet days with a precipitation
amount of at least 2 mm d−1. This is done to optimize the adapted breakpoint detection
algorithm described by Taylor (2000) which is discussed in detail in Section 3.3. For
the regression analysis and hence the determination of correction factors, the data set is
limited to periods from April to October to prevent solid precipitation and associated
distortions to influence the factors. Further, it is restricted to wet days with at least
1 mm d−1 and a DP-Flag of ≤ 10 %. This serves to minimize the influence of days with
very low intensities and allows to improve on accuracy regarding significant precipitation
amounts.

3.2 Variance analysis

Before homogenizing the data station wise, a general variance analysis appears useful
to assess the data. Figure 3.1 shows a box-and-whisker plot of the relative deviation
of each station from the mean annual precipitation amount in the WegenerNet FBR
(2007-2021). It can be observed that for most years, a symmetrical distribution can be
assumed. The interquartile range lies for most years in between ±5 % relative deviation
and is never exceeding ±10 %. Maxima and minima vary over the years, but except in
the years 2009, 2012, 2015 and 2018, do not exceed ±20 % of relative deviation. Every
year shows outliers, most of which underestimate precipitation and reinforce the assump-
tion that there is room for homogenization.

It is conceivable that stations that deviate strongly from the mean value might do so
due to their location and exposure, and are not necessarily subject to breakpoints or
systematic errors. Therefore, in the following we will consider if location and altitude

7
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3 Data and methods

Figure 3.1: Relative deviation of station precipitation amounts from the WegenerNet L2 v7.1
regional-mean annual precipitation amount.

influence the measurement. Regarding location, Figure 3.2 shows the mean annual pre-
cipitation amount over 15 years (2007-2021) and for the years 2019 and 2020 separately.
Regarding the average over the last 15 years it can be observed that there is a gradient
from northwest to southeast, with highest precipitation amounts in the northwest. Part
of the variance therefore can be explained by the positioning of the stations. However,
this correlation occurs to varying degrees over time. While exemplary in the year 2019
location variation appears to be quite strong, this is not the case for 2020 (see Fig-
ure 3.2). A possible further explanation, as stated above, could be the stations altitude.
When the mean annual precipitation is plotted against the stations’ altitude, Figure 3.3,
no clear relationship can be found.

In summary, positioning of stations in the network indeed plays a role in explaining
the variance, albeit fluctuating over time. However, the altitude of the stations does
not. Systematic errors and breakpoints are further explanations. Those, unlike the
location bias, must be homogenized.
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3.2 Variance analysis

(a) mean (2007 − 2021)

(b) 2019

(c) 2020

Figure 3.2: Annual precipitation amount (long-term mean and example years 2019 and 2020) in
dependence of the station location (longitude left, latitude right).
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3 Data and methods

Figure 3.3: Annual precipitation amount of the WegenerNet FBR stations (identified by station
number) in dependence of station altitude.

3.3 Breakpoint detection algorithm

The breakpoint detection is based on an algorithm described by Taylor (2000), which is
using turning points of the cumulative sum function to detect breakpoints in timeseries
data. In the present case, the normalized cumulative sum of the increment is used. The
increment is given by the difference between the daily mean precipitation amount of
the station and the median of prior selected neighboring stations. This approach was
also used by Ebner (2017) and Scheidl et al. (2020) to homogenize WegenerNet rela-
tive humidity and air temperature data. In the present case however, the increment
is calculated as the relative difference (rather than the absolute difference used in the
above cited works) between measurements of the candidate station and its neighbors.
While this, in addition to the adjustment of other parameters, can be seen as the main
structural difference in the usage of the algorithm, in selecting neighboring stations and
deciding on breakpoints we follow closely the work by Scheidl et al. (2020) which built
up on and improves the implementation by Ebner (2017).
In the following we describe how the increment value is calculated and how the algorithm
is detecting the breakpoints.

For each candidate station, Agreeing Neighboring Stations (ANBS) are selected. To be
selected as ANBS, the Potential Agreeing Neighboring Stations (PNBS), which are all
stations within a 5 km radius of the candidate station, must fulfil the following condition:

10



3.3 Breakpoint detection algorithm

√√√√ 1
n

∑
i

(
pi − ci

ci
− p̄− c̄

c̄

)2
< t ·

√√√√ 1
n

∑
i

(
ci − c̄
c̄

)2
(3.1)

where

n = number of available days
pi = precipitation amount of PNBS on day i
ci = precipitation amount of the candidate station on day i
p̄ = daily mean precipitation amount of the PNBS
c̄ = daily mean precipitation amount of the candidate station

t = accordance level
{

0.7 for breakpoint detection
0.8 for regression analysis

Thus the PNBS is accepted as ANBS if the standard deviation of the relative difference
between the PNBS and the candidate station is smaller than 70 % of the coefficient of
variation of the candidate station.
The increment Ii of the candidate station on day i is calculated as follows, where ai

denotes the data of the corresponding ANBS stations:

Ii = ci −median(ai)
median(ai)

(3.2)

Note that in order to calculate the increment at day i, only ANBS stations with a DP-
Flag ≤ 20 % are allowed and at least 5 ANBS stations must be available.

Aiming to find the breakpoints in the candidate station data, the cumulative sum of
the normalized increment for each day i needs to be calculated:

Ci =
i∑

k=1
Inorm,k (3.3)

where

Inorm,i = Ii − Ī
C0 = 0

Using the cumulative sum as a function C of the time (days), the potential first order
breakpoints are found at the minimum and maximum value of C:

cpmin = argmin(C)
cpmax = argmax(C)
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3 Data and methods

To be accepted as a significant breakpoint however, the potential breakpoints must fulfil
the following condition:

|C(cp)| > 1.96 · std[CB(cp)] (3.4)

where CB are the cumulative sum values of 1000 bootstraps at the breakpoint day cp.
Thereby, a bootstrap is the normalized increment of the candidate station but randomly
rearranged. The confidence is given with lying outside 1.96 standard deviations which
is equivalent to 95 %.

The algorithm is applied stations wise three times recursively, searching the time span
before, between and after the found breakpoints. Periods that are smaller than 21 days
are not processed. The algorithm also skips the first and the last 7 days of the processed
interval as implemented by Scheidl et al. (2020).
As output, the algorithm provides the dates of significant first, second, and third order
breakpoints for each station as output. These dates are used as reference points for the
regression analysis in order to quantify the discrepancies and calculate the correction
factors.

3.4 Regression analysis

The regression analysis is carried out station wise and examines the relationship be-
tween the candidate stations’ daily data and the median of the corresponding ANBS
set, using regression through the origin. Two purposes are fulfilled. On the one hand,
it is checked if significant slope differences between sensor types are present, by analyz-
ing time series in which different sensor types were mounted separately. This allows to
check for sensor change discrepancies which are not detected by the breakpoint detection
and to determine correction factors for all sensor change induced inhomogeneities. On
the other hand, the time series before, after, and between all other dates found by the
breakpoint detection are analyzed. This enables the quantification of all other found
inhomogeneities and the determination of adequate correction factors.

In order to reinforce reasoning for this approach, the regression analysis was also carried
out against the data of the external ZAMG stations for close by WegenerNet stations.
This was done to verify that using the ANBS median as a reference does not involve
any internal biases. The slopes showed only marginal differences when plotted against
ZAMG or ANBS data such that the approach seems robust. Furthermore, it has the
advantage over the single use of spatially poor distributed external data, that spatial
differences are preserved after correction, since locally close reference data become avail-
able for every station investigated.

The correction factors are defined as the difference of the respective regression line
slope to the slope of the reference time span, which, as reasoned in Section 4.1, is the
slope of the Meteoservis time series of the respective station. Only differences with the
absolute amount being ≥ 0.05 are considered worthy of correction. If the reference slope

12



3.4 Regression analysis

is not feasible due to strong inhomogeneities, the difference to 1 or, if available, to a
slope of another homogeneous time span of the station is utilized. This procedure is
used to reduce possible distortions of the spatial characteristics of the stations’ due to
the correction.
The ANBS stations are determined in the same way as the breakpoint detection algo-
rithm, but with different parameters. PNBS stations are all stations in a 3 km radius of
the candidate station and become an ANBS if they fulfil the condition 3.1. Note that the
accordance level is set to 0.8. In order to calculate the ANBS median, ANBS stations
must have a DP-Flag ≤ 20 % and at least 5 ANBS stations must be available.
The regression line slope is calculated as follows:

slope =
∑N

i=1(Ci ·Ai)∑N
i=1A

2
i

(3.5)

where

N = number of paired daily datasets available
i = the ith day

Ci = data from candidate station
Ai = ANBS median data

Note that for the fit of the linear regression line the increment is forced to 0. The
corresponding correlation coefficient r is calculated according to the following equation:

r =

√√√√∑N
i=1 Ĉi

2∑N
i=1C

2
i

(3.6)

where

Ĉi = ith fitted value of the candidate station data

To provide further information and to evaluate the improvement after homogenization,
the following statistical parameters are calculated for each candidate station. In the
selection, we followed closely the homogenization work by O et al. (2018). The bias (eq.
3.7), mean absolute error MAE (eq. 3.8), relative bias rbias (eq. 3.9), relative mean
absolute error rMAE (eq. 3.10), and the root mean squared error RMSE (eq. 3.11):

bias =
∑N

i=1(Ci −Ai)
N

(3.7)

MAE =
∑N

i=1 |Ci −Ai|
N

(3.8)
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rbias =
∑N

i=1(Ci −Ai)∑N
i=1Ai

· 100 (3.9)

rMAE =
∑N

i=1 |Ci −Ai|∑N
i=1Ai

· 100 (3.10)

RMSE =

√∑N
i=1(Ci −Ai)2

N
(3.11)
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4 Results and discussion

4.1 Breakpoint analysis
Figure 4.1 shows an example of the output of the breakpoint detection analysis for station
10. The first panel provides the temporal course of the increment, the mean increment,
the offset between the mean increment before and after a breakpoint (BP), and dates of
sensor and location changes. The second panel contains the cumulative sum function,
the respective bootstraps, and the found BP’s. Panel three supplies the data availability
for each day. The last panel provides the DP-Fag percentage value of the respective data
point (days).

Two noticeable inhomogeneities can be observed in this example. Next to a tempo-
rary change in measurement during a short period in 2011, between the tertiary BP
and the secondary BP (see Figure 4.1), a significant primary BP at the visible inflection
point of the cumulative sum function was detected. It coincides with the sensor change
to Meteoservis on July 5, 2016. A noticeable difference in the time series before and after
the sensor change is thus detected, which is then quantified in the regression analysis
where the correction factors are obtained using the respective slopes.
Figure 4.2 shows the results for station 4 as another example that shows many BPs. In
this case, next to a sensor change induced primary BP and secondary and tertiary BP’s,
another primary BP on April 12, 2011 is detected. However, the cause of this primary
BP remains unknown. A change in exposure, sensor malfunction, or unnoticed clogging
are potential causes.

These two examples demonstrate the functionality of the detection. While the sen-
sor change dates are documented and the breakpoint detection gives a first indication
if it is conspicuous, it is first and foremost dates of such other primary BP’s that are
searched for station by station. Subsequently all documented sensor change dates and
all found primary BP dates are used as input in the regression analysis and correction
factors are obtained if required. A list of all found primary breakpoint is provided in
Table 4.1. Dates of secondary and tertiary BP’s are only passed into the regression
analysis, if the respective time series of the station appears to be especially worthy to
break down further. However, this remains an exception. In the case of station 10, for
example, this was omitted because the corrected time series obtained is considered too
short.
While station 4 is an example of strong inhomogeneity with primary and many third and
tertiary BPs, station 56 in Figure 4.3 demonstrates the opposite, a very homogeneous
time series. In this case only a tertiary BP is detected and the sensor exchange did not
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4 Results and discussion

have any significant influence on the series.

In general, each station shows a differently homogeneous pattern, which is to be ex-
pected. In addition to the expected differences in frequency and type of BPs, only for
about 37 % of the stations, the sensor changes to Meteoservis is detected as a BP. Note
that an exact assignment of the relevant BP to the sensor change day is sometimes dif-
ficult. They do not always match perfectly, as there may be dry periods between the
change and the first measurement of the new sensor. However, this gives a first indica-
tion that the Meteoservis sensors do not require any systematic correction. As pointed
out in Chapter 2, the previous sensors Friedrichs and Young are already subject to a
linear systematic correction, introduced by O et al. (2018).

In addition, the breakpoint detection graphically shows that the Meteoservis time series
for most stations tends to be more homogeneous than the time spans of the previous
sensors. This impression is affirmed and quantitatively substantiated by the regression
analysis and underpins that a general correction of the Meteoservis sensors seems not
to be necessary. Furthermore, this gives reason to use the Meteoservis time series as
reference period for the station-specific corrections. This was realized, apart from a few
exceptions where a visibly more homogeneous time series was available as reference.

16



4.1 Breakpoint analysis

Station primary BP
2 2015-05-01
3 2016-07-13
4 2011-04-12
4 2016-07-31
5 2011-05-15
6 2016-08-29
7 2016-07-16
8 2009-05-24
9 2016-07-28
10 2016-06-30
11 2017-07-23
13 2016-06-05
14 2016-02-09
15 2016-05-14
16 2009-05-22
16 2016-06-15
17 2011-07-02
19 2011-08-09
20 2014-07-10
23 2011-08-27
24 2015-04-28
25 2015-03-26
27 2016-07-06
30 2010-05-13
31 2014-10-01
32 2008-04-29
32 2016-05-23
33 2013-12-29
34 2014-09-14
36 2015-02-22
37 2013-09-17
38 2015-07-17
39 2019-05-09
40 2009-07-05
40 2016-06-26
42 2013-08-24
44 2011-07-22
44 2018-06-12
45 2013-04-12
46 2015-05-15

Station primary BP
47 2015-03-02
47 2021-05-27
48 2017-06-25
49 2008-12-01
49 2016-08-21
50 2007-08-18
50 2016-07-26
51 2016-01-06
52 2012-07-14
52 2021-05-27
53 2016-07-31
54 2011-06-14
55 2010-12-03
57 2007-06-07
57 2016-06-30
58 2014-04-14
59 2016-02-09
60 2018-05-29
61 2013-05-05
62 2012-11-12
63 2016-08-10
64 2007-08-18
64 2013-04-12
65 2017-06-25
66 2017-07-24
67 2019-06-27
68 2011-04-12
69 2016-11-19
70 2012-03-19
71 2011-06-23
72 2013-07-11
73 2011-05-21
74 2013-04-02
75 2016-08-09
76 2021-07-17
78 2014-07-25
78 2018-02-04
79 2017-06-24
80 2018-06-06
81 2008-06-06

Station primary BP
81 2016-09-17
82 2009-06-27
82 2019-06-27
83 2008-03-24
83 2016-06-19
84 2017-06-10
85 2013-05-05
86 2012-05-21
87 2012-10-29
88 2016-01-06
89 2012-10-29
90 2016-08-21
93 2018-07-15
94 2012-05-28
94 2018-07-15
95 2011-06-23
95 2018-06-12
96 2016-07-31
97 2016-09-06
98 2016-10-10
99 2019-08-02
101 2018-09-23
104 2012-11-28
105 2007-06-06
105 2017-06-24
106 2017-06-28
107 2017-07-01
108 2008-07-26
108 2014-07-22
109 2016-05-13
110 2010-02-26
110 2018-03-06
112 2008-06-20
113 2008-06-30
113 2016-05-23
114 2007-08-07
114 2016-10-02
116 2016-05-23
117 2011-07-02
118 2012-09-19

Station primary BP
119 2008-11-30
119 2018-02-08
120 2007-07-07
120 2014-02-11
121 2011-09-18
123 2019-07-17
124 2017-07-24
125 2007-08-10
126 2008-06-23
126 2017-07-24
127 2017-06-25
128 2016-07-16
129 2011-09-18
131 2009-12-22
132 2013-08-28
133 2016-09-04
134 2014-06-03
135 2010-08-15
136 2019-06-05
137 2017-12-10
138 2013-06-02
139 2012-04-22
140 2016-09-16
141 2017-08-27
142 2016-08-16
143 2007-08-10
143 2014-02-11
144 2018-03-05
145 2009-01-16
145 2016-05-23
146 2019-08-24
147 2012-03-19
148 2013-08-09
149 2009-07-15
150 2017-04-14
151 2016-05-14
152 2013-05-06
154 2017-12-29
155 2020-09-27

Table 4.1: Overview of Primary Breakpoints (BP) found.
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4 Results and discussion

Figure 4.1: Result of breakpoint detection for example station 10.
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4.1 Breakpoint analysis

Figure 4.2: Result of breakpoint detection for example station 4.
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4 Results and discussion

Figure 4.3: Result of breakpoint detection for example station 56.
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4.2 Correction factors from regression analysis

4.2 Correction factors from regression analysis
Figure 4.4 shows an example of the regression analysis for the above described time series
of station 10. In this case, as seen in in Figure 4.1, only one primary BP which is inline
with the sensor change date was found. Note that the BP, as documented in Table 4.1,
is on June 30, 2016. However, the exact senor change was documented on July 5, 2016.
Since the latter date is more accurate, it is this date which is used for the analysis.

Two time spans are analyzed. Before the sensor change on July 5, 2016, in which the
Friedrichs sensor operated, and after, where the Meteoservis sensor is operational. The
latter is taken as the reference as outlined in Section 4.1 and Section 3.3. The absolute
slope difference of 0.16 between the first time span (0.89) and the reference (1.05) is ≥
0.05. Therefore, the value 0.16 is accepted as the correction factor for the period before
the sensor replacement.

Figure 4.4: Regression analysis - result for example station 10.

21



4 Results and discussion

In the case of multiple BPs, as it is the case for station 4 described above, multiple time
periods are analyzed. In this case, from the beginning of the measurement series to the
first breakpoint, from the first breakpoint to the sensor change date (second primary
BP), and from the change date to the end of the time series.

All slopes of the respective time periods are provided in Figure 4.5. The reference
slope value equals to 1.03 (bottom right panel). For the first period, from start to the
first BP (top left panel) with a slope of 1.09, the difference to the reference slope results
in a correction factor of -0.06. For the second period, from the first BP to the sensor
change (bottom left panel) with a slope of 1.15, a correction factor of -0.12 is obtained
analogously.

Following this procedure, all stations were checked with regard to the time span before
and after the documented sensor change. For those stations where the breakpoint de-
tection provided additional primary breakpoints, cf. Table 4.1, additional slopes for the
respective periods were calculated. The obtained correction factors and the begin and
end date of the periods to which they were applied are listed in Table 4.2. Note that
corrections listed in Table 4.2 as station 7730, -31 and -32 correspond to the Friedrichs,
Young and Meteoservis sensor at station 77 respectively.

As the reference station of the network, all sensor types used work in parallel at this
station and were therefore analyzed and corrected individually. Note that due to limi-
tations described in Section 4.6, changes will be made to the correction factors and the
below factors are therefore preliminary. The final correction factors are documented in
Table 4.5.
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4.2 Correction factors from regression analysis

(a) Start - first BP - second BP (sensor change) (b) Start - sensor change - end

Figure 4.5: Regression analysis - result for example station 4.
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Station Begin End Correction factor
3 2007-01-01 2016-07-05 0.09
4 2007-01-01 2011-04-12 -0.06
4 2011-04-12 2016-07-06 -0.12
5 2007-01-01 2011-05-15 0.09
6 2007-01-01 2016-07-08 -0.09
7 2007-01-01 2016-07-08 0.08
8 2009-05-24 2016-07-08 -0.05
10 2007-01-01 2016-07-05 0.16
11 2007-01-01 2013-10-07 0.05
13 2007-01-01 2016-07-06 0.05
15 2007-01-01 2016-07-08 0.12
16 2009-05-22 2016-07-08 -0.08
17 2007-01-01 2011-07-02 0.06
19 2007-01-01 2011-08-09 -0.09
20 2014-07-10 2016-08-08 -0.06
22 2018-06-08 2018-09-01 -0.15
22 2018-09-01 2099-12-31 -0.08
23 2007-01-01 2011-08-27 -0.16
24 2007-01-01 2016-07-05 0.06
25 2016-07-05 2099-12-31 -0.06
27 2007-01-01 2016-07-04 -0.13
30 2007-01-01 2010-05-13 0.03
31 2014-10-01 2016-07-09 -0.08
32 2008-04-29 2013-10-07 0.06
34 2007-01-01 2014-09-14 -0.06
36 2015-02-22 2016-08-09 -0.05
37 2007-01-01 2011-07-17 -0.09
37 2011-07-17 2012-04-23 -0.12
37 2012-04-23 2013-10-08 -0.06
38 2007-01-01 2015-07-17 0.09
39 2016-07-05 2019-05-09 0.14
40 2007-01-01 2009-07-05 -0.08
40 2009-07-05 2016-07-05 0.12
42 2007-01-01 2013-08-24 0.18
42 2013-08-24 2016-07-06 0.1
44 2007-01-01 2011-07-22 0.1
44 2011-07-22 2013-10-08 0.24
44 2013-10-08 2018-06-12 0.1
46 2007-01-01 2015-05-15 0.06
47 2007-01-01 2015-03-02 -0.07
48 2007-01-01 2016-07-05 -0.09
50 2007-01-01 2016-08-29 0.08
51 2007-01-01 2016-08-09 0.07
52 2012-07-14 2015-03-02 0.05
53 2007-01-01 2016-08-09 -0.11
59 2007-01-01 2016-08-22 0.12
60 2018-05-29 2021-12-17 0.14
61 2007-01-01 2013-05-05 0.06
61 2013-05-05 2016-08-28 0.05
62 2012-11-12 2016-08-27 0.05
64 2007-01-01 2016-07-05 0.05
66 2007-01-01 2016-08-29 -0.08
68 2011-04-12 2016-08-09 -0.06
69 2007-01-01 2016-08-09 0.07
70 2007-01-01 2012-02-19 0.06
71 2007-01-01 2011-06-23 0.12

Station Begin End Correction factor
71 2011-06-23 2016-08-22 0.05
72 2007-01-01 2013-10-05 -0.05
75 2007-01-01 2016-08-24 -0.13
78 2007-01-01 2014-07-25 0.07
78 2014-07-25 2016-08-27 0.25
80 2018-06-06 2099-12-31 -0.05
82 2007-01-01 2009-06-27 -0.07
83 2007-01-01 2016-08-10 -0.1
84 2017-06-10 2099-12-31 -0.06
85 2007-01-01 2013-05-05 0.15
87 2012-10-01 2016-08-22 -0.08
88 2016-01-06 2016-08-22 -0.05
88 2016-08-22 2099-12-31 -0.07
89 2012-10-29 2016-08-24 -0.08
90 2007-01-01 2016-08-28 -0.09
93 2016-08-29 2018-07-15 -0.08
96 2007-01-01 2016-08-27 0.08
98 2007-01-01 2016-08-23 0.07
101 2018-09-23 2099-12-31 -0.19
104 2016-08-24 2099-12-31 -0.06
105 2007-01-01 2016-06-28 0.05
106 2007-01-01 2016-08-28 0.08
107 2007-01-01 2014-09-26 0.05
107 2017-07-01 2099-12-31 -0.07
109 2007-01-01 2016-08-29 0.12
111 2007-01-01 2016-08-26 -0.05
112 2007-01-01 2008-06-20 -0.05
113 2008-06-30 2014-11-14 0.05
113 2014-11-14 2016-08-23 0.17
116 2007-01-01 2016-08-23 0.08
119 2007-01-01 2008-11-30 -0.13
119 2018-02-08 2019-09-02 -0.13
119 2019-09-02 2099-12-31 -0.08
121 2007-01-01 2016-08-25 -0.06
123 2007-01-01 2016-08-29 -0.05
126 2008-06-23 2016-08-23 0.1
126 2017-07-24 2099-12-31 -0.07
127 2007-01-01 2016-08-23 0.08
128 2007-01-01 2016-08-23 -0.06
129 2011-09-18 2016-08-08 0.08
134 2014-06-03 2016-08-25 -0.06
135 2007-01-01 2010-08-15 -0.16
137 2016-08-26 2017-12-10 -0.06
139 2007-01-01 2012-04-22 -0.3
139 2012-04-22 2013-10-21 -0.09
142 2007-01-01 2016-08-25 0.12
143 2007-01-01 2007-08-10 -0.13
143 2014-02-11 2016-08-25 -0.07
145 2007-01-01 2009-01-16 0.09
145 2009-01-16 2016-08-26 0.2
148 2007-01-01 2016-08-24 0.05
7730 2015-07-10 2018-08-10 0.06
7730 2018-08-10 2099-12-31 -0.06
7731 2007-01-01 2013-10-16 -0.29
7732 2007-01-01 2014-01-14 -0.08
7732 2017-10-11 2099-12-31 -0.11

Table 4.2: Overview of preliminary correction factors from the regression analysis.
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4.3 Quality parameters for results assessment

4.3 Quality parameters for results assessment
A comparison of the quality parameters described in Section 3.4, before and after the
correction, reveals and quantifies the homogeneity improvements achieved. Two analyses
were performed. A comparison of all WegenerNet stations before and after correction,
see Table 4.3, and a comparative comparison where only the corrected stations were
considered, see Table 4.4.
In both cases the parameter values of all respective stations were grouped by sensor type
and the mean value of the respective parameter was calculated. In the after correction
panel of both tables, parameters that have improved compared to the respective before
correction panel are marked in green, if they have worsened in red, and if they have
remained the same in gray.

Before correction:

Sensor group bias [mm/d] MAE [mm/d] rbias [%] rMAE [%] RMSE [mm/d]
Young 0.13 1.8 1.05 18.28 3.2
Friedrichs 0.24 1.37 2.39 13.26 2.37
Young+Friedrichs 0.23 1.4 2.26 13.62 2.43
Meteoservis 0.24 1.25 2.66 13.42 2.53

After correction:

Sensor group bias [mm/d] MAE [mm/d] rbias [%] rMAE [%] RMSE [mm/d]
Young -0.38 1.6 -3.87 15.92 2.88
Friedrichs 0.25 1.3 2.41 12.56 2.27
Young+Friedrichs 0.21 1.32 1.99 12.79 2.31
Meteoservis 0.24 1.24 2.65 13.3 2.49

Table 4.3: Quality parameters for all WegenerNet stations (average), grouped by sensor type.

Before correction:

Sensor group bias [mm/d] MAE [mm/d] rbias [%] rMAE [%] RMSE [mm/d]
Young 0.11 1.87 0.92 19.08 3.32
Friedrichs 0.13 1.42 1.38 13.71 2.45
Young+Friedrichs 0.13 1.47 1.33 14.27 2.54
Meteoservis 0.22 1.26 2.41 13.54 2.52

After correction:

Sensor group bias [mm/d] MAE [mm/d] rbias [%] rMAE [%] RMSE [mm/d]
Young -0.44 1.65 -4.45 16.49 2.96
Friedrichs 0.22 1.31 2.13 12.67 2.3
Young+Friedrichs 0.15 1.34 1.45 13.06 2.37
Meteoservis 0.18 1.25 2.02 13.45 2.48

Table 4.4: Quality parameters for corrected stations only (average), grouped by sensor type.
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4 Results and discussion

In both analyses, the MAE, rMAE and RMSE improved significantly for all sensor
groups. Thus, the prediction error has decreased and all sensor groups show a higher
agreement with the reference (ANBS median). Hence, the data have a significantly
higher homogeneity. Note that a spatial representation of the improvement is given by
grid data comparison in the next subsection. However, it also reveals, with exception of
the Meteoservis and the combined Friedrichs + Young sensor group, the latter only when
all stations are considered, that the bias and rbias parameters have slightly worsened.

While the differences in the Friedrichs and the Friedrichs + Young group are minor
(< 0.1 mm d−1 for bias and < 1 pp. for rbias), the Young group appears to have a
stronger negative bias. Since only very few Young sensors were corrected, it seems likely
that this is due to a possible overcorrection of station 139. The respective Young sensor
faced a strong positive bias and was considerably corrected downwards (cf. Table 4.2).
It is conceivable that the now slightly negative bias was triggered by this. However, this
also implies that the previously strong positive bias has averaged out in the group.

It should be noted, that the homogeneity for this and all other stations has never-
theless improved because the prediction error decreased or equivalently, the agreement
with the reference improved. However, for the two groups mentioned, the magnitude
and direction of the deviation changed slightly. Whether and to what extent certain sta-
tions, such as 139, should therefore be corrected again is being investigated separately
in Section 4.6.

4.4 Comparative analysis with a focus on extreme precipitation
4.4.1 Mean annual precipitation and differences in monthly precipitation
Figure 4.6 shows the averaged annual precipitation (2007-2021) for the uncorrected data
version v7.1 (right panel) and for the corrected version v8 (left panel) in a 200 m x 200 m
resolution. Clearly visible dark spots, indicating stations with a strong negative bias,
have significantly been reduced. Examples are in particular station 44, 144 and 11 (cf.
Figure 2.1). Moreover, the general spatial distribution of precipitation appears to be
significantly smoother, while the gradient pattern remained.

This is substantiated when comparing mean annual precipitation (µ) and the cor-
responding standard deviation (σ) and coefficient of variation (CV). All values are pro-
vided in Figure 4.6. Data version v8 shows a 3.53 mm higher µ value and both σ and the
CV have decreased significantly, indicating higher uniformity. Despite the higher level of
homogeneity, light and dark spots, indicating deviating stations, are still visible in the v8
version. Suggesting that stations have not been corrected, were insufficiently corrected,
or overcorrected. A closer look and possible re-corrections are therefore considered in
Section 4.6.

26
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Figure 4.6: Mean annual precipitation amounts v8 vs. v7.1.

Figure 4.7 and Figure 4.8 provide the same analysis on a 1 km x 1 km grid in compar-
ison to the ERA5 and ERA5 Land data set. In both cases µ is again lower than the
respective WegenerNet value, but the σ and the CV value are smaller as well. However,
a possible explanation for the uniform distribution are the minimal spatial differences in
the comparative data sets visible. While both data sets indicate a northwest-southwest
gradient in precipitation, albeit in slightly different magnitudes, hardly any differences
are visible at grid cell level when compared to the WegenerNet data.

The comparison with the SPARTACUS data, Figure 4.9, shows a similar picture with
regard to the calculated parameters. However, the comparative data set exhibits much
more pronounced spatial differences, which overlap with the distribution in the Wegen-
erNet data. Lower precipitation in the northeast and southeast and tendentially more
precipitation towards the center and southwest of the Feldbach region.
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4 Results and discussion

Figure 4.7: Mean annual precipitation amounts v8 vs. ERA5.

Figure 4.8: Mean annual precipitation amounts v8 vs. ERA5-Land.

Figure 4.9: Mean annual precipitation amounts v8 vs. SPARTACUS.
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Regarding mean annual precipitation, it can be concluded that the corrected data are
significantly more homogeneous and smoother compared to the previous version v7.1.
The comparative data sets considered show a lower regional mean value and distribution
parameters, but also significantly less spatial differences and thus information content.In
order to take a closer look at differences to the previous data version v7.1, the difference
and relative difference in monthly precipitation sums are analyzed in Figure 4.10. Two
main changes become visible.

First, the precipitation amount has increased in most summer months due to the cor-
rections. However, these increases remain well below 5 %, albeit with five exceptional
months in 2010-2012. In addition, it becomes clear that this applies more sharply to the
period up to 2016. This is due to the fact that the transition to Meteoservis sensors was
completed in this year, which faced fewer and smaller corrections. Second, many winter
months show significantly less precipitation. This is due to an update of the WPS solid
precipitation detection and interpolation algorithm, introduced in version v8. This is
therefore not to be seen as an effect of the present correction but due to the improvement
in the handling of solid precipitation.

Figure 4.10: Difference in monthly precipitation amounts v8 vs. v7.1.
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4.4.2 Differences in extreme precipitation

Analyses of changes in the information content of extreme precipitation events as a re-
sult of homogenization, as well as respective differences to the comparative data sets,
are conducted using four different measures. Each of these measures is analyzed con-
cerning the region and two selected locations within the FBR. The latter is intended to
also demonstrate changes at grid cell level. The two locations selected are Feldbach and
Fehring. Feldbach was chosen as it is the location of one of two ZAMG stations within
the FBR, of which the data are included in both the INCA and SPARTACUS model data
sets. Fehring, on the other hand, was chosen because it is afield from the ZAMG stations
such that the weight in the INCA and SPARTACUS data is expected to be smaller. This
allows a differentiated comparison between the datasets, as well as an investigation of
the influence of station proximity on the model-driven datasets INCA and SPARTACUS.

The first measure is the maximum 24 hour precipitation sum per month (24HMMax),
analyzed from April to October. Thereby the 24HMMax difference between the v8 data
and the respective comparative data set is examined. Note that consequently, the We-
generNet v8 data determines the date where the respective 24HMMax is located. The
second measure is analogous to 24HMMax, but examines the maximum amount of pre-
cipitation per hour during a month, denoted as 1HMMax. For each comparative data
set, the date where the 1HMMax is located is determined by the v8 data, but the exact
time (hour) on the specific day remains a degree of freedom. Thus, the sum of the
strongest hour in each set on the determined day are used to calculate the 1HMMax
difference.

The last two measures examine the exceedance of the 95th percentile of 24- and 1-
hour precipitation totals per month from April to October. The percentiles were calcu-
lated using daily (> 0.99 mm) and hourly (> 0.33 mm) v8 grid data covering 15 years
(2007-2021). The calculated values are 31.50 mm d−1 and 7.30 mm h−1, respectively. In
addition to the amount of exceedance, defined as measured millimeters above the per-
centile per month, the difference from the WegenerNet v8 data is also considered.

Figure 4.11 shows the 24HMMax difference (top) between the WegenerNet v8 and v7.1
data version. Except for a few month, the difference is positive, indicating that the cor-
rection in general lead to an increase of the 24HMMax amounts. The provided relative
difference reveals that this increase, except for 4 month, is less than +5 %. Furthermore
the increase is more pronounced up to the year 2016. This is consistent with stronger
corrections for sensors in operation prior to the 2016 replacement with Meteoservis sen-
sors.

Regarding the change in the 1HMMax difference (bottom), the picture is similar as
to be expected. The corrections resulted in higher 1HMMax values in the new data
version, with most values increasing by no more than 0.25 mm. The differences, except
for 5 values, do not, consequently, exceed the 5% mark. Again, the differences appear
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more pronounced by 2016, which is due to the stronger correction of the non-meteoservis
sensors.

For the selected locations Feldbach and Fehring regarding the 24HMMax measure, Fig-
ure 4.12, the picture is different. While in Feldbach the correction has resulted in signif-
icantly higher values almost over the entire period, Fehring was subject to a significant
downward correction, resulting in negative 24HMMax differences up until 2016, followed
by a weak positive trend. Feldbach therefore faced a notable negative bias before cor-
rection, while in Fehring, before the Meteoservis sensors where operative, a positive bias
was present.

The corresponding analysis of the 1HMMax differences in Figure 4.13 shows the same
pattern. In Feldbach, an upward correction led to higher values almost over the entire
period, while in Fehring there was predominantly a downward correction until 2016 and
an upward correction from then until the present, although with smaller magnitude.
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Figure 4.11: 24HMMax (top) and 1HMMax (bottom) difference FBR - WegenerNet v8 vs. v7.1.
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Figure 4.12: 24HMMax difference Feldbach/Fehring - WegenerNet v8 vs. v7.1.
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Figure 4.13: 1HMMax difference Feldbach/Fehring - WegenerNet v8 vs. v7.1.
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While the differences from the v7.1 data version are generally small, a different picture
emerges when analyzing the ERA5 and ERA5 land data in Figure 4.14. For almost
all months, the absolute differences in 24HMMax are positive, with most being below
20 mm d−1. A look at the relative difference shows that this negative deviation is strong
in both data sets, with many months exceeding the 100% mark. This means that heavy
precipitation events in the region that lead to the 24HMMax in the v8 data are often
represented much less intense or not at all in the considered data sets.

As an example, this is shown for ERA5 Land in Figure 4.15 and Figure 4.16 for June
2018 and August 2021, respectively. These figures include the precipitation total in
the region on the day the 24HMMax was recorded (third panel) and the day before
and after (second and fourth panel, respectively) as well as, for reference, the monthly
precipitation total (first panel). All data are plotted on a 1 km x 1 km grid. Analyz-
ing Figure 4.15, the WegenerNet v8 data display a regional mean of 26.29 mm d−1 on
June 21, 2018 (24HMMax). The ERA5 land dataset, on the other hand, shows only
1.70 mm d−1. Therefore, the strongest 24-hour precipitation event in June 2018 is not
fully represented in the ERA5 dataset.

However, when looking at the monthly total, it can be seen that the difference resulting
from the discrepancy is averaged out. As a result, the monthly precipitation mean (first
panel in Figure 4.15) is larger than the value in the WegenerNet v8 data. Examining
the case of August 2021 (Figure 4.16) in the same way, the situation is similar except
that the difference in 24HMMax does not even out over the month and persists, as can
be seen from the average precipitation values for the entire month.
Regarding the 24HMMax difference to ERA5 (Figure 4.17) and ERA5 Land (Figure 4.18)
in Feldbach and Fehring, the picture is similar to the region. However, strong deviations,
where the comparative data set does not show a 24-hour precipitation sum of comparable
magnitude to the 24HMMax of the v8 data, seem to occur more frequently in Feldbach
than in Fehring, especially in the years up to 2010. Furthermore, the absolute difference
is also significantly smaller in Fehring. As in the analysis for the region, there are no
structural differences between ERA5 and ERA5 Land, although the differences in the
ERA5 Land data are marginally smaller.
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4 Results and discussion

Figure 4.14: 24HMMax difference FBR - WegenerNet v8 vs. ERA5 and ERA5 Land.
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.15: 24HMMax case study: June 2018 - WegenerNet v8 vs. ERA5-Land.
first row: Monthly mean second row: Day before 24HMMax
third row: Day of 24HMMax fourth row: Day after 24HMMax
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4 Results and discussion

Figure 4.16: 24HMMax case study: August 2021 - WegenerNet v8 vs. ERA5-Land.
first row: Monthly mean second row: Day before 24HMMax
third row: Day of 24HMMax fourth row: Day after 24HMMax
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.17: 24HMMax difference Feldbach/Fehring - WegenerNet v8 vs. ERA5.
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4 Results and discussion

Figure 4.18: 24HMMax difference Feldbach/Fehring - WegenerNet v8 vs. ERA5-Land.
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4.4 Comparative analysis with a focus on extreme precipitation

The comparative analysis of the v8 data with the SPARTACUS data shows differences to
the comparison with the ERA5 and ERA5 land datasets. This can be attributed to the
higher spatial resolution of the SPARTACUS data, which leads to a higher agreement
with the WegenerNet data. This is evident when analyzing the 24HMMax differences
of the region in Figure 4.19. The SPARTACUS data also show a negative difference
for most months, but the differences are mostly well below 10 mm d−1. The relative
difference for most months is less than +25 %.

Nevertheless, there are four months in which the relative 24HMMax difference exceeds
the 100% mark. This suggests that the SPARTACUS dataset fails to reflect certain
24HMMax extreme precipitation events in a similar manner as the ERA5 and ERA5
land datasets. However, these discrepancies occur much less frequently. Again, two of
these events are examined in detail in two case studies. Figure 4.20 thereby analyzes the
24HMMax event in May 2009. While the WegenerNet data provide a regional mean of
24.17 mm d−1, the SPARTACUS data estimate is 5.65 mm d−1. The difference is almost
exactly the same as the difference in monthly totals (first panel), i.e., the difference is
not offset by generally higher values in the SPARTACUS data and remains.
Similarly, this can be seen for the July 2017 24HMMax event in Figure 4.21, with a
similarly large difference on that particular day.

Figure 4.19: 24HMMax difference FBR - WegenerNet v8 vs. SPARTACUS.
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4 Results and discussion

Figure 4.20: 24HMMax case study: May 2009 - WegenerNet v8 vs. SPARTACUS.
first row: Monthly mean second row: Day before 24HMMax
third row: Day of 24HMMax fourth row: Day after 24HMMax
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.21: 24HMMax case study: July 2017 - WegenerNet v8 vs. SPARTACUS.
first row: Monthly mean second row: Day before 24HMMax
third row: Day of 24HMMax fourth row: Day after 24HMMax
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4 Results and discussion

Regarding the 24HMMax difference between the v8-WegenerNet data and SPARTACUS
in Feldbach and Fehring, Figure 4.22, the picture is similar to the regional observation.
However, the number of 24HMMax mismatches with a deviation of more than 100% is
higher in both locations (Fehring (13) and Feldbach (10)). It is also noticeable that the
SPARTACUS data in Feldbach, in contrast to Fehring, shows a solely negative monthly
bias for the years 2010-2013 (positive difference). In all other years and at both sites,
negative and positive biased months are present. However, with a strong tendency
towards negative bias.
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.22: 24HMMax difference Feldbach/Fehring - WegenerNet v8 vs. SPARTACUS.

45



4 Results and discussion

A comparative analysis of the 1HMMax data from WegenerNet v8 and the INCA dataset
in Figure 4.23 shows that the INCA data are subject to a substantial negative bias, with
very few negative differences visible until about 2013. Thereafter, the negative differences
are more prominent, with the positive differences generally being more pronounced. In
addition, it is noticeable that similar to the other comparative datasets, single hourly
precipitation extremes are not depicted in the INCA dataset. This is evident when
analyzing the 1HMMax difference in April 2009, May 2011 to 2013, and July 2015 in
Figure 4.23. In which cases, the relative difference is well above the 100% mark.
Figure 4.24 provides the 1HMMax differences for Feldbach and Fehring. While the
INCA data show a negative bias at both locations, it is much stronger in Fehring with
many differences beeing above +50%. Also, differences where the INCA dataset does
not reflect certain 1HMMax extreme precipitation events are much more frequent in this
location. This applies in particular to the years 2007 to 2012. In general, as in the region
as a whole, the bias in the INCA data appears to be stronger in both regions by 2013.

Figure 4.23: 1HMMax difference FBR - WegenerNet v8 vs. INCA.
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.24: 1HMMax difference Feldbach/Fehring - WegenerNet v8 vs. INCA.
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4 Results and discussion

Analyzing the amount of exceedance of the 95th percentile of the 24-hour totals in mm
per month for the FBR region, the WegenerNet data show the highest values compared
to the other data sets, as can be seen in Figure 4.25. The difference between the v7.1 and
v8 data versions is small and does not exceed 1.5 mm, as seen in Figure 4.28. Thus, ho-
mogenization resulted in higher precipitation amounts of the heaviest 5% of all 24-hour
precipitation totals. This is further highlighted by the predominantly positive differences
between the v8 and v7.1 data versions in Figure 4.28.

While the ERA5 and ERA5Land datasets show only a few months with exceedance,
where the highest values are in August 2009 and September 2017, the SPARTACUS
data show a similar pattern to the WegenerNet data, albeit with lower values. The
latter is evident in Figure 4.25. As with the 24HMMax differences, the agreement of the
SPARTACUS dataset with the WegenerNet data is much higher compared to the ERA5
and ERA5 Land data, most likely due to the higher spatial resolution and the weight of
direct measurements obtained from the ZAMG stations located in the region. Although
less pronounced, a negative bias is nevertheless clearly visible in the SPARTACUS data
as well.
Two years, 2009 and 2021, are particularly noteworthy. For both June and August 2009,
the highest exceedance values in the last 15 years are observed. This is visible in all
considered data sets except for the ERA5 & ERA5 Land data where this only holds for
August. In 2021, on the other hand, no exceedance was observed in the WegenerNet
and Spartacus data, while the ERA5 & ERA5 land data indicate about 15 to 20 mm for
July of that year.
For the sites Feldbach and Fehring, the following can be stated regarding the exceedance
amounts (Figure 4.26 and Figure 4.27, respectively) and the differences to the v8 data
version (Figure 4.29 and Figure 4.30, respectively). Analyzing the differences, Feldbach
was subject to a negative bias prior correction, so that the difference between v8 and
v7.1 was almost entirely positive. Fehring, on the other hand, was subject to a positive
bias before correction until 2016, when it was corrected downward (see Figure 4.30).
Since the corrections for the pre-2016 sensors (non-Meteoservis) were stronger, this is
consistent. However, since the mentioned differences are of small magnitude, the overall
difference to the comparative datasets, at both sites, is not significantly different from
the analysis for the region.
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.25: Precipitation exceedance amount - 24H / whole Region.
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4 Results and discussion

Figure 4.26: Precipitation exceedance amount - 24H / Feldbach station.
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.27: Precipitation exceedance amount - 24H / location Fehring station.
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4 Results and discussion

Figure 4.28: Precipitation exceedance difference - 24H / whole Region.
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.29: Precipitation exceedance difference - 24H / Feldbach station.
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4 Results and discussion

Figure 4.30: Precipitation exceedance difference - 24H / Fehring station.
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4.4 Comparative analysis with a focus on extreme precipitation

Analyzing the amount of exceedance of the 95th percentile of 1-hour totals in milli meter
per month for the FBR region, the WegenerNet data show higher values compared to
the INCA dataset, as seen in Figure 4.31. The difference between the v8 and v7.1
data versions is small and does not exceed 1.5 mm with one exception, as seen in Fig-
ure 4.34. Thus, as with the 24-hour totals, homogenization resulted in higher precipi-
tation amounts of the heaviest 5% of all 1-hour precipitation totals and is highlighted
by the predominantly positive differences between the v8 and v7.1 data versions in Fig-
ure 4.34.

The INCA data show a similar pattern to the WegenerNet data (see Figure 4.31). How-
ever, when analyzing the differences between the WegenerNet v8 data and the INCA
data in Figure 4.34, it is clear that the INCA data show less mm per month of exceedance
than the WegenerNet data for almost all months until 2013. From 2014 onward, no clear
bias is observed. The month of August 2020 is particularly notable in both data sets,
with the highest observed exceedance amount.

For Feldbach and Fehring, similar to the 24HMMax analysis, the following can be stated
regarding the exceedance amounts (Figure 4.32 and Figure 4.33, respectively) and the
differences to the v8 data version (Figure 4.35 and Figure 4.36, respectively). Feldbach
was subject to a negative bias prior correction, so that the difference between v8 and
v7.1 is almost entirely positive (see fig. 4.35). Fehring, on the other hand, was subject
to a positive bias before correction until 2016, when it was corrected downward (see
Figure 4.36). The letter is consistent with stronger corrections of pre-2016 sensors (non-
Meteoservis).

When comparing with the INCA data, it can be seen for Feldbach that the Wegen-
erNet v8 data mostly show higher exceedance amounts until 2013. From there on, no
clear trend can be seen. In comparison to Fehring, however, it becomes clear, especially
for the differences (see Figure 4.35 and Figure 4.36), that the deviations in Fehring are
significantly larger and more scattered. However, a trend toward negative bias in the
Inca data up to the year 2013 can also be observed.
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4 Results and discussion

Figure 4.31: Precipitation exceedance amount - 1H / whole Region.
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.32: Precipitation exceedance amount - 1H / Feldbach station.
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4 Results and discussion

Figure 4.33: Precipitation exceedance amount - 1H / Fehring station.
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.34: Precipitation exceedance difference - 1H / whole Region.
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4 Results and discussion

Figure 4.35: Precipitation exceedance difference - 1H / Feldbach station.
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4.4 Comparative analysis with a focus on extreme precipitation

Figure 4.36: Precipitation exceedance difference - 1H / Fehring station.
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4 Results and discussion

4.5 Limitations of the analyses
The applied homogenization methods are subject to two main constraints. First, the
breakpoint detection algorithm is not stable against repetition for higher order break-
points close to the acceptance threshold in dependence of the bootstraps. Second, the
correction of ANBS stations can lead to over correction in some cases.
The first described problem was also found in the analysis of Ebner (2017) but was sig-
nificantly improved by Scheidl et al. (2020) in updating the acceptance criterion in the
algorithm to Equation (3.4), making it independent of single boot strap outliers. While
this minimized the repeatability issues described in detail by Scheidl et al. (2020), the
present implementation still contains repeatability problems for higher order breakpoints
close to the set threshold.

However, this weakness is accepted for several reasons. First, the focus in this anal-
ysis is on first-order breakpoints (primary BP). Second- and third-order BPs to further
divide the respective time series were rarely applied and thus needed. Second, the graph-
ical representation of the sum function visualizes all conspicuous points in the time series
as well as all bootstraps, regardless of acceptance, so cross checks are possible. Third,
breakpoints due to sensor changes are double-checked by the regression analysis anyway.
Nevertheless, improvement is conceivable through a higher number of bootstraps or a
filter for bootstrap outliers, but can be computationally expensive.
The second weakness can be described as follows. If a station shows no need for correc-
tion after the regression analysis (deviation of the slope between before and after sensor
change is not more than 0.05), this may not be the case after correction in some cases.
Since the ANBS stations are used as a reference, corrections may occur for them as
well. Thus, if only a few data points are responsible for not exceeding the 5% mark due
to the distribution of scatter points in the regression analysis, a slight change in these
data points due to the ANBS correction may be sufficient to overcome the deviation
threshold after the correction. Therefore, a second regression analysis after correction is
recommended to detect such overcorrections and to counteract them if necessary.
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4.6 Re-correction of the precipitation data

4.6 Re-correction of the precipitation data

Due to the limitation described in the previous chapter and the remaining of conspicuous
stations when analyzing grid decadal data, see Figure 4.6 and Figure 4.38, the regres-
sion analysis was carried out a second time on the v8 data, and correction factors were
obtained in the same manner as outlined in Section 4.2. To avoid unrealistic changes to
the probability distribution of the rain rates, a histogram analysis was used to check if
the obtained correction factors are acceptable. The correction is considered acceptable,
if the distribution of heavy precipitation (≥ 2 mm / 5 min), faces no strong distortion
by the correction and is an improvement in comparison to the uncorrected data and
the reference. As reference, a Meteoservis time series of an ANBS station with a slope
close to 1.0 was used. Figure 4.37 shows the histogram for example station 34. The
correction factors proposed for this station before (top) and after (bottom) the sensor
change resulted in a convergence of the corrected data (green) to the reference (gray)
compared to the uncorrected data (blue) for most bins. Since the distribution is shifted,
this is not true for all bins.

Overall, however, the distribution is closer to the reference in most bins and is therefore
accepted. To further ensure that overcorrection does not occur and regional differences
are not distorted, the results are compared to the decadal mean of annual precipitation
in the region, see panel (a) in Figure 4.38. Stations that overestimate or underestimate
precipitation compared to their neighbors (dark red and blue dots), e.g., station 34 and
57, are visible and can be cross-checked with the results of the regression analysis. Only
if a station appears suspicious in fig. 4.38 panel (a) the proposed and quantified correc-
tion factor by the regression analysis is accepted. If a station appears conspicuous in
Figure 4.38 but does not exceed the threshold for correction according to the result of
the regression analysis, it is corrected nevertheless. However, this remains an exception.
In the case that the regression analysis specifies a correction factor for a station and
time series that has already been corrected, the final correction factor is calculated as
follows:

x = (1 + y) ∗ (1 + z)− 1 (4.1)

where

x = final correction factor
y = preliminary correction factor
z = re-correction factor

By applying the correction factors obtained in this manner, a further improvement in the
homogeneity of the data can be achieved. The previously dark red and dark blue spots in
panel (a) of Figure 4.38, have largely disappeared after the re-correction, see panel (b).
This demonstrates that the still existing strongly deviating stations have now also been
corrected and an even more homogeneous pattern has emerged overall. Furthermore,
the regional differences remain largely intact, giving no indication of overcorrection.
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4 Results and discussion

Figure 4.37: Partial histogram of example station 34 (bins ≥ 2 mm / 5 min).
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4.6 Re-correction of the precipitation data

(a) Before re-correction

(b) After re-correction

Figure 4.38: Decadal mean annual precipitation amount (v8 Data) and conspicuous stations be-
fore (a) and after (b) the re-correction.
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4 Results and discussion

The final correction values we recommend for homogenizing the WegenerNet v8 data,
merging the preliminary factors of Table 4.2 and the obtained re-correction factors as
described above, are provided in Table 4.5 below.
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4.6 Re-correction of the precipitation data

Station Begin End Correction factor
3 2007-01-01 2016-07-05 0.09
4 2007-01-01 2011-04-12 -0.06
4 2011-04-12 2016-07-06 -0.12
5 2007-01-01 2011-05-15 0.09
6 2007-01-01 2016-07-08 -0.04
7 2007-01-01 2016-07-08 0.08
8 2009-05-24 2016-07-08 -0.05
9 2016-07-05 2099-12-31 -0.06
10 2007-01-01 2016-07-05 0.16
10 2016-07-05 2099-12-31 -0.05
11 2007-01-01 2013-10-07 0.05
13 2007-01-01 2016-07-06 0.05
15 2007-01-01 2016-07-08 0.03
15 2016-07-08 2099-12-31 -0.06
16 2009-05-22 2016-07-08 -0.08
17 2007-01-01 2011-07-02 0.06
18 2007-01-01 2015-05-07 -0.05
19 2007-01-01 2011-08-09 -0.09
20 2014-07-10 2016-08-08 -0.06
21 2016-08-19 2099-12-31 -0.05
22 2018-06-08 2018-09-01 -0.15
22 2018-09-01 2099-12-31 -0.08
23 2007-01-01 2011-08-27 -0.11
24 2007-01-01 2016-07-05 0.06
25 2016-07-05 2099-12-31 -0.06
27 2007-01-01 2016-07-04 -0.09
28 2016-07-09 2099-12-31 -0.06
29 2007-01-01 2099-12-31 -0.05
30 2007-01-01 2010-05-13 0.03
31 2014-10-01 2016-07-09 -0.08
32 2008-04-29 2013-10-07 0.06
34 2007-01-01 2016-07-09 -0.04
34 2016-07-09 2099-12-31 0.09
35 2016-08-08 2099-12-31 -0.09
35 2007-01-01 2016-08-08 -0.08
36 2015-02-22 2016-08-09 -0.05
37 2007-04-01 2013-10-18 -0.04
37 2013-10-10 2018-05-16 0.06
38 2016-08-09 2099-12-31 -0.06
39 2016-07-05 2019-05-09 0.04
39 2019-05-09 2099-12-31 -0.09
40 2007-01-01 2009-07-05 -0.08
40 2009-07-05 2016-07-05 0.12
41 2007-01-01 2016-07-06 -0.08
41 2016-07-06 2099-12-31 -0.06
42 2007-01-01 2013-08-24 0.11
42 2013-08-24 2016-07-06 0.03
42 2016-07-06 2099-12-31 -0.06
44 2007-01-01 2011-07-22 0.19
44 2011-07-22 2013-10-08 0.34
44 2013-10-08 2018-06-12 0.23
44 2018-06-12 2099-12-31 0.12
45 2016-08-27 2099-12-31 -0.05
46 2007-01-01 2016-08-29 0.06
47 2007-01-01 2015-03-02 -0.07
48 2007-01-01 2016-07-05 -0.09
50 2007-01-01 2016-08-29 0.08
51 2007-01-01 2016-08-09 0.07
52 2012-07-14 2015-03-02 0.05
53 2007-01-01 2016-08-09 -0.11
54 2016-07-05 2099-12-31 -0.06
57 2007-01-01 2016-07-06 -0.07
57 2016-07-06 2099-12-31 -0.06
58 2016-08-22 2099-12-31 -0.09
58 2007-01-01 2016-08-22 -0.06
59 2007-01-01 2016-08-22 0.01
59 2016-08-22 2099-12-31 -0.06
60 2018-05-29 2021-12-17 0.14
61 2007-01-01 2013-05-05 0.06
61 2013-05-05 2016-08-28 0.05
62 2012-11-12 2016-08-27 -0.03
62 2007-01-01 2012-11-12 -0.08
62 2016-08-27 2099-12-31 -0.06
64 2007-01-01 2016-07-05 -0.04
64 2016-07-05 2099-12-31 -0.07
66 2007-01-01 2016-08-29 -0.08
68 2011-04-12 2016-08-09 -0.06
69 2007-01-01 2016-08-09 0.07
70 2012-02-19 2016-08-22 -0.07
70 2016-08-22 2099-12-31 -0.09
71 2007-01-01 2011-06-23 0.12
71 2011-06-23 2016-08-22 0.05
72 2007-01-01 2013-10-05 -0.05
75 2007-01-01 2016-08-24 -0.09

Station Begin End Correction factor
76 2007-01-01 2016-08-28 -0.05
76 2016-08-28 2099-12-31 -0.07
77 2007-01-01 2014-01-14 -0.08
77 2017-10-11 2099-12-31 -0.07
78 2007-01-01 2014-07-25 0.07
78 2014-07-25 2016-08-27 0.25
80 2018-06-06 2099-12-31 -0.05
82 2007-01-01 2009-06-27 -0.07
83 2007-01-01 2016-08-10 -0.1
84 2017-06-10 2099-12-31 -0.06
85 2007-01-01 2013-05-05 0.23
85 2012-07-29 2013-05-05 0.15
87 2012-10-01 2016-08-22 -0.08
88 2016-01-06 2016-08-22 -0.05
88 2016-08-22 2099-12-31 -0.07
89 2007-01-01 2012-10-29 -0.06
89 2012-10-29 2016-08-24 -0.11
89 2016-08-24 2099-12-31 -0.05
90 2007-01-01 2016-08-28 -0.09
91 2013-06-24 2016-08-21 -0.12
93 2016-08-29 2018-07-15 -0.13
93 2007-01-01 2016-08-29 -0.07
93 2018-07-15 2099-12-31 -0.06
95 2007-01-01 2016-08-29 -0.07
96 2007-01-01 2016-08-27 0.08
97 2007-01-01 2016-08-27 0.08
98 2007-01-01 2010-08-08 -0.03
98 2010-08-08 2016-08-21 0.07
101 2018-09-23 2021-12-15 -0.24
101 2013-10-16 2018-09-23 -0.06
103 2007-01-01 2099-12-31 -0.05
104 2016-08-24 2099-12-31 -0.06
105 2007-01-01 2010-03-22 0.05
105 2014-10-23 2016-06-28 0.05
106 2007-01-01 2016-08-28 -0.07
106 2016-08-28 2099-12-31 -0.07
107 2007-01-01 2014-09-26 0.05
107 2017-07-01 2099-12-31 -0.07
109 2016-08-29 2099-12-31 -0.06
111 2007-01-01 2016-08-26 -0.05
111 2016-08-26 2099-12-31 -0.06
112 2007-01-01 2008-06-20 -0.05
113 2008-06-30 2014-11-14 0.05
113 2014-11-14 2016-08-23 0.17
114 2007-01-01 2016-08-23 0.1
115 2016-08-23 2099-12-31 -0.05
116 2007-01-01 2012-07-24 0.08
116 2016-08-23 2099-12-31 -0.06
117 2016-08-25 2099-12-31 -0.05
119 2007-01-01 2008-11-30 -0.07
119 2018-02-08 2019-09-02 -0.13
119 2019-09-02 2099-12-31 -0.04
119 2008-11-30 2016-08-28 0.05
120 2016-08-28 2099-12-31 -0.05
121 2007-01-01 2016-08-25 -0.06
123 2007-01-01 2016-08-29 -0.05
125 2016-08-24 2099-12-31 -0.05
126 2008-06-23 2016-08-23 0.1
126 2017-07-24 2099-12-31 -0.07
127 2009-10-01 2016-08-23 0.08
128 2007-01-01 2016-08-23 -0.06
129 2011-09-18 2016-08-08 0.08
130 2016-08-25 2099-12-31 -0.07
131 2007-04-03 2009-12-22 -0.09
131 2016-08-25 2099-12-31 -0.05
133 2007-04-03 2016-08-25 -0.05
134 2014-06-03 2016-08-25 -0.06
135 2007-01-01 2010-08-15 -0.16
137 2016-08-26 2017-12-10 -0.06
137 2007-01-01 2016-08-26 -0.06
139 2007-01-01 2012-04-22 -0.25
139 2012-04-22 2013-10-21 -0.03
142 2007-01-01 2016-08-25 0.05
142 2016-08-25 2019-08-02 -0.13
143 2007-01-01 2007-08-10 -0.13
143 2014-02-11 2016-08-25 -0.07
145 2007-01-01 2009-01-16 0.09
145 2009-01-16 2016-08-26 0.2
146 2016-08-28 2099-12-31 -0.05
148 2007-01-01 2016-08-24 0.05
152 2014-06-03 2020-08-23 -0.19
7730 2015-07-10 2018-08-10 0.06
7730 2018-08-10 2099-12-31 -0.06
7731 2007-01-01 2013-10-16 -0.29

Table 4.5: Final correction factors.
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5 Conclusion

Most regions of the northern hemisphere have experienced a climate change-driven in-
crease in one- and five-day heavy precipitation since the 1950s, with the proportion of
stations with significant increases varying widely among regions (IPCC 2021, Sun et al.
2021). Simultaneously, losses in assets due to hydrological events are increasing (Mu-
nich Re 2020). High-resolution precipitation data are therefore of great value. The high
density ground weather station network WegenerNet Feldbach Region (FBR) provides
such data continuously since 2007. Inhomogeneities are inevitable when providing pre-
cipitation data from many stations with high temporal resolution.

The main purpose of this thesis consequently was to improve the quality of the data
by homogenization and to compare the information content of extreme precipitation in
the data to the standard data sets SPARTACUS, ERA5, ERA5-Land, and INCA.
By adapting the method of Scheidl et al. (2020) resp. Taylor (2000) to the homoge-
nization of precipitation data, breakpoints in the WegenerNet L2 v7.1 daily data were
detected by comparing the time series of all stations with those of selected neighbor-
ing stations. The primary breakpoints identified are summarized in Table 4.1. Based on
these breakpoints, a regression analysis was performed to quantify the deviation from se-
lected neighboring stations, referred to as Agreeing Neighboring Stations (ANBS). These
values were used as linear correction factors to homogenize the WegenerNet data L2 v7.1.

It was found that especially sensors installed before 2016 and thus in operation before a
major upgrade of most stations, changing Friedrichs and Young to Meteoservis sensors,
needed correction. This finding supports the argument for the switch to Meteoservis
gauges as primary sensors. The application of the proposed correction factors leads to
a quantifiable quality improvement, for details see Section 4.3 and Section 4.4. As a
result the data are significantly more homogeneous. In general, the correction results in
an increase in precipitation amounts compared to the uncorrected data when analyzing
the grid mean annual precipitation over 15 years, see Figure 4.6, and the differences in
monthly precipitation amounts, see Figure 4.10. This trend is more pronounced through
2016, as sensors that were in operation prior to the switch to Meteoservis faced a signif-
icant negative bias.

In order to ensure that no overcorrection was introduced, and because it became ap-
parent, e.g. in Figure 4.38, that some stations still deviated strongly from the neighbor-
ing stations, the used methods were applied again on the corrected data in Section 4.6.
The merged correction factors of the preliminary values and the ones obtained in the
re-correction are proposed as quality improvement for the new WegenerNet data version
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L2 v8 and are documented in Table 4.5.

When analyzing the differences from the standard datasets regarding the mean annual
precipitation amount over 15 years in the FBR (Section 4.4), it was found that the com-
parative datasets all underestimate precipitation. Furthermore, little spatial differences
are present in the ERA5 and ERA5-land data. Spatial patterns are however evident in
the SPARTACUS data that overlap with the pattern in the WegenerNet data.

With respect to the comparative analysis between v8 and v7.1 extreme precipitation, the
following can be stated. Compared to the uncorrected v7.1 data, there are only small
differences. However, since most sensors showed a negative bias, all relevant parame-
ters, 24HMMax, 1HMMax, and the analyzed exceedance amounts tend to show slightly
higher values after correction.

In the ERA5 and ERA5-Land data, a negative bias is consistently seen in the 24HM-
Max measure. In certain months, the deviation from the WegenerNet data is more than
100 %. Hence, individual 24-hour extreme precipitation events are not accurately rep-
resented in these data sets. The difference between ERA5 and ERA5-Land is small,
but the ERA5-Land data agrees consistently better with the WegenerNet data. For the
SPARTACUS data however, the agreement with the WegenerNet data is clearly more
significant, which can be explained by the higher spatial resolution compared to the
ERA5 and ERA5-Land data. Nevertheless, it is also evident here that individual 24-
hour extreme precipitation events are not or only inadequately represented compared to
the WegenerNet data, with intensity differences of well over 100 %.

Concerning the 1HMMax parameter, the INCA data showed a negative bias compared
to the WegenerNet data up to the year 2013 (this is consistent with the findings of
Ghaemi et al. (2021)). Thereafter, this bias is significantly less pronounced. In addition,
although less common, there are mismatches where a 1HMMax event is not reflected in
the INCA data, similar to the other data sets and the 24HMMax measure. Concerning
the exceedance of the 95th percentile of the 24-hour amounts, the ERA5 and ERA5-Land
data showed hardly any exceedance amount. In contrast, the SPARTACUS data showed
a very similar distribution of the quantities over time compared to the WegenerNet data.
However, the exceedance amounts are lower than in the WegenerNet data. With regard
to the exceedance of the 95th percentile of the 1-hour precipitation amounts, the INCA
data showed no bias after 2013 and a very similar picture to the WegenerNet data. Be-
fore that, however, as with the 1HMMax values, a slightly negative bias can be identified.

If extreme precipitation events are to be analyzed at the regional level or for specific
locations with the analyzed datasets as a basis, it is advisable to crosscheck events or
the period under observation with nearby ground stations. Events that occur on small
spatial scales, but lead to significant precipitation amounts in the region, are not always
represented in model-based and/or reanalysis data, according to the evidence provided
in this thesis.
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